副教授

李富林

  • 职称 :副教授
  • 邮箱 :Lflsxx66@163.com
  • 所属系 :大学数学
  • 主讲课程 :高高等代数、近世代数、高等数学、线性代数、现代密码学。
  • 研究领域 :序列密码、公钥密码、量子秘密共享、量子多方安全计算、区块链。
教育经历
  • 1999年9月--2003年6月:毕业于安徽师范大学;应用数学,大学本科学历;
    2006年9月--2009年6月:毕业于威廉希尔WilliamHill官方网站;威廉希尔体育官方网站,编码密码方向,硕士研究生学历;
    2009年9月--2012年6月:毕业于威廉希尔WilliamHill官方网站;管理学院,管理信息学方向,博士研究生学历;
工作经历
  • 2003年6月--2006年9月:巢湖学院,数学系,教师;
    2012年6月--至今:威廉希尔WilliamHill官方网站,威廉希尔体育官方网站,教师;
科研项目
  • 主持项目
    1. 国家十二五密码规划项目:有限域上变换移位寄存器序列的快速生成算法及其在流密码中的应用研究(MMJJ201201006),2013/01-2014/12;
    2 . 安徽省自然科学基金面上项目:非线性多重序列快速生成算法研究(1508085MA13),2015/1-2016/12;
研究成果
  • [1]LiFulin;ChenTingyan; Li Meng; Lin Changlu. Efficient and verifiable general quantum secret sharing based on special entangled state[J]. IEEE Internet of Things Journal, doi: 10.1109/JIOT.2023.3339715, 2023. (SCI中科院一区Top;CCF C)
    [2]LiFulin; ChenTingyan; ZhuShixin. A (t, n) threshold quantum secret sharing scheme with fairness[J]. International Journal of Theoretical Physics,2023, 62: 119. (SCI)
    [3]LiFulin; ChenTingyan; ZhuShixin. An efficient and secure dynamic quantum direct two-secrets sharing scheme[J], Modern Physics Letters B, 2023, 37: 2350180. (SCI)
    [4]LiFulin; ChenTingyan; Zhu Huihui; ZhuShixin; Pang Binbin. Dynamic hierarchical quantum secret sharing with general access structure[J]. Quantum Information Processing, 2023, 22: 320. (SCI中科院三区)
    [5]LiFulin; Luo Mei; Zhu Huihui; Zhu Shixin; Pang Binbin. A (w, t, n)-weighted threshold dynamic quantum secret sharing scheme with cheating identification[J]. Physica A, 2023,612: 128494.(SCI中科院二区)
    [6]LiFulin;Luo Mei; Zhu Shixin; Pang Binbin. General quantum secure multiparty computation protocol for simultaneous summation and multiplication[J]. Physica Scripta, doi: 10.1088/1402-4896/ad1281, 2023.(SCI中科院三区)
    [7]LiFulin; HuHang;ZhuShixin; YanJiayun; DingJian. A verifiable (k, n)-threshold dynamic quantum secretsharing scheme[J]. Quantum Information Processing, 2022, 21: 259.(SCI中科院三区)
    [8]LiFulin;ChenTingyan; ZhuShixin. Dynamic (t, n) threshold quantum secret sharing based ond-dimensional Bell state[J]. Physica A , 2022, 606: 128122.(SCI中科院二区)
    [9]LiFulin; LuoMei; ZhuShixin. A new (w, t, n)-weighted threshold quantum secret sharingscheme based on two-qubit system[J]. Physica A, 2022, 607: 128229.(SCI中科院二区)
    [10]LiFulin; HuHang; ZhuShixin. A (k,n)-threshold dynamic quantum secure multiparty multiplication protocol[J].Quantum Information Processing, 2022, 21:394. (SCI中科院三区)
    [11]Li Fulin; LiuYang; Yan Jiayun; Zhu Shixin.A new fair multi‑secret sharing scheme based on asymmetricbivariate polynomial[J]. Cryptography and Communications, 2022, 14: 1039-1053. (SCI中科院三区)
    [12]WuTingting; ZhuShixin; LiFulin; LiuLi. Two Quantum Secret Sharing Schemes with Adversary Structure[J]. International Journal of Theoretical Physics, 2022, 61: 206.(SCI)
    [13]LiFulin; Yan Jiayun; Zhu Shixin; Hu Hang. A verifiable multi-secret sharing scheme based on short integer solution[J]. Chinese Journal of Electronics,2023, 32(3):556-563.(SCI)
    [14]Li Fulin; HuHang; Zhu Shixin; Yan Jiayun. A fully dynamic multi-secret sharing scheme with redundant authorization [J]. Cryptography and Communications, doi:10.1007/s12095-022-00613-3, 2022. (SCI中科院三区)
    [15]Li Fulin; HuHang; Zhu Shixin; Li Ping. A verifiable (k, n)-threshold quantum secure multiparty summation protocol[J]. International Journal of Theoretical Physics, 2023, 62(2):17. (SCI)
    [16]Wang Yaru; Li Fulin; Zhu Shixin.Secret Sharing Schemes from Linear Codes over F_2 + vF_2 + v~2F_2[J]. Chinese Journal of Electronics, 2021, 30(5): 895-901.(SCI)
    [17]Tian Fuyin; Zhu Shixin; Sun Zhonghua; Li Fulin. Some New Entanglement-Assisted Quantum Error-Correcting MDS Codes with Length $\frac{q^{2}+1}{13}$[J]. International Journal of Theoretical Physics, 2021, 60: 1843-1857.(SCI)
    [18]Li Fulin; Yan Jiayun; Zhu Shixin. General quantum secret sharing scheme based on two qudit[J]. Quantum Information Processing, 2021, 20: 328.(SCI中科院三区)
    [19]Pang Binbin; Zhu Shixin; Li Fulin; Chen Xiaojing. New entanglement-assisted quantum MDS codes with larger minimum distance[J]. Quantum Information Processing, 2020, 19: 207.(SCI中科院三区)
    [20]Wang Yaru; Li Fulin; Zhu Shixin.Two-Weight Linear Codes and Their Applications in Secret Sharing[J]. Chinese Journal of Electronics, 2019, 28(4): 706-711(SCI)
    [21]LiFulin; Zhu, Shixin; Hu, Honggang; Jiang, Ting. Determining the k-error joint linear complexity spectrum for a binary multisequence with period p(n)[J]. Cryptography andCommunications, 2016, 8(4): 513-523. (SCI中科院三区)
    [22]Li Fulin; Hu Honggang; Zhu Shixin. FCSR periodic multi-sequences with maximal joint N-adic complexity and large k-error joint N-adic complexity over Z/(N)[J]. Journal of Systems Science and Complexity, 2014, 27(2): 370-381. (SCI中科院三区)
    [23]ZhuShixin; LiFulin. Periodic sequences with maximal N-adic complexity and large k-error N-adic complexity over Z/(N)[J]. Journal of Complexity, 2012, 28(2): 202-208. (SCI中科院二区; CCF C)

1